
Physical Chemistry V Exercise II 22 February 2013

Coherent spectroscopy

In PC IV you have learnt about Bloch equations, Rabi oscillations and pulse sequences as

an approach to extracting useful information on the structural and dynamical properties of

matter based on the coherent interaction between nuclear or electronic spins and radio waves.

In principle these approaches can be transferred to the domain of optical spectroscopy for

the same purposes. Unfortunately, at optical frequencies one has to deal with di�erent and

much faster relaxation processes that destroy coherence. For example, in NMR, spontaneous

emission is very slow, because of the ν3 scaling (where ν is the emitted frequency), such that

its contribution to bringing the spin system into thermal equilibrium is negligible. On the

contrary, at optical frequencies, spontaneous emission is one of the most important sources

of decoherence. Nonetheless, progress in laser sources and techniques has provided a great

deal of possibilities in the coherent manipulation of atoms and molecules that nowadays have

important applications in areas as diverse as quantum information science and femtochemistry.

1 Rabi oscillations

Rabi oscillations are a fundamental consequence of coherent light-matter interaction. In this

context the term �coherent� implies that the light �eld has a well-de�ned temporal phase ωt+φ.

Nowadays this is most commonly realized using laser light sources. Being able to observe Rabi

oscillations in an experiment is a clear signature of strong light-matter interaction.

(a) Consider Eqs. (1.96) and (1.97) from the lecture notes. These equations describe the

temporal behaviour of a driven quantum mechanical system. Show that the equations

can be reformulated as

i
dc1

dt
=

V12

2
c2 and (1)

i
dc2

dt
= (ω2 − ω)c2 +

V21

2
c1. (2)

Assume for simplicity that φ = 0. It is also helpful to choose the ground-state energy to

be E1 = 0⇒ ω1 = 0. Use the ansatz

b1 = c1 (3)

b2 = c2 exp (−iωt) (4)

where ω represents the laser angular frequency. Further equations (1) and (2) are obtained

by neglecting terms that oscillate with a frequency of 2ω and higher. This can be justi�ed

by the rotating wave approximation.

(b) Consider the case of resonant driving, i. e. ω = ω2. Solve the di�erential equation pair by

di�erentiating (2) and substituting from (1).
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(c) Only the absolute square values of the coe�cients ci(t) have a physical meaning. Calculate

|c2(t)|2. What is the characteristic oscillation frequency?

2 Ladder operator formalism

In general, the quantum mechanical Hamiltonian of a system can be derived by formulating

its classical analogue and converting the observables into operators. Example: The quantum

mechanical Hamiltonian for the well-known harmonic oscillator with resonance frequency ω and

mass m is given by

H =
P̂ 2

2m
+
mω2X̂2

2
. (5)

In the lecture on quantummechanics (PC III), you have solved the time-independent Schrödinger

equation for the harmonic oscillator in position space. Here, we will use a di�erent approach

to solve this problem. It involves the ladder operators

â =

√
mω

2 ~

(
X̂ +

iP̂

mω

)
(6)

and

â† =

√
mω

2 ~

(
X̂ − iP̂

mω

)
. (7)

(a) Express the position operator X̂ and the momentum operator P̂ in terms of the two

ladder operators (6) and (7).

(b) Show that [â, â†] = 1. Use the fundamental commutator relationship [X̂, P̂ ] = i ~.

(c) Express the Hamiltonian in terms of the operator â†â and show that the time-independent

Schrödinger equation can be written as

~ω
(
â†â+

1

2

)
|n〉 = En |n〉 (8)

where En denotes the energy of eigenstate |n〉.

(d) Given an arbitrary eigenstate |n〉 with energy En, calculate the energy of the state â |n〉.
Show that â |n〉 is also an eigenstate with energy En − ~ω. Hint: Use [â, â†] = 1.

What you have just shown is that â acting on an energy eigenstate produces another eigenstate

the energy of which has been decreased by one quantum ~ω. This is why â is called the lowering
operator. Likewise, â† is called the raising operator ; it produces an eigenstate the energy of

which has been increased by one energy quantum.

An eigenstate's energy is thus nothing but the sum of several single energy quanta (excita-

tions). The number n of quanta can be used to characterize an eigenstate, which is why we

denoted the eigenstates |n〉.
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(e) We will now explore the limits for the eigenvalues of the number operator. Show that the

expectation value for n̂ is always positive or zero. Hint: Consider the (arbitrary) state

â |ψ〉.

Combining the �ndings of problem 2 (e) with Equation (8) we see that there is a minimum

energy

E0 =
~ω
2

(9)

corresponding to the ground state |0〉. In the language of ladder operators this reads

â |0〉 = 0, (10)

i. e. there is no lower lying state below the ground state.

(f) Assuming that all the energy eigenstates are normalized, 〈n|n〉 = 1, �nd a general expres-

sion for â |n〉. With that result, verify that â |0〉 = 0.

3 Probing and controlling vibrational wave packets

Rabi oscillations require a strong and steady laser source that drives the system faster than the

decoherence time. Here we discuss a di�erent approach, which is based on femtosecond (1 fs =

10−15s) laser pulses. The idea is to observe and control coherent dynamics via the preparation of

a coherent superposition of vibrational states using broadband pulsed excitation. In particular,

we look at the situation where a train of fs pulses excites a �uorescent molecule [1].

As shown in Fig. 1, each pulse creates a wave packet |ψ(0)〉 in the vibrational levels of the

�rst excited electronic state. We assume that the wave packet |ψ(t)〉 evolves according to the

Hamiltonian Ĥ of a one-dimensional (1D) harmonic oscillator. At the same time, the wave

packet loses quantum coherence due to vibrational relaxation at a rate Γ . If the next fs pulse

in the train arrives before coherence has been completely destroyed by relaxation, it creates a

copy of the initial wave packet |ψ(0)〉 that interferes with the previous one |ψ(t)〉. By adjusting

the time delay ∆t and the relative phase ϕ between two pulses, one can coherently manipulate

the wave function of the excited state manifold:

|Ψ(∆t, q)〉 = exp(iϕ)|ψ(0)〉+ |ψ(∆t)〉. (11)

This event can be observed by measuring the �uorescence signal, which is proportional to the

population in the �rst excited electronic state |Ψ(∆t, ϕ)|2. Hence, by observing a slow process

(�uorescence), we have access to the fast coherent dynamics in the excited state, which are

manipulated using ultrafast laser pulses (excitation).

(a) The temporal evolution of a quantum mechanical system can be expressed in terms of

time-dependent state coe�cients. For our vibrational system this can be written as
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Figure 1: (left panel) Schematics of the experiment. A train of fs pulses with a controlled
delay and phase excites a single molecule. Its �uorescence signal is observed using a
standard epi-�uorescence microscope, sketched as a magnifying glass. (right panel)
Level scheme, with pump sequences, evolution, vibrational relaxation and �uorescence
transition. Each fs pulse creates a coherent wave packet that evolves and, at the same
time, undergoes vibrational relaxation.

|ψ(t, q)〉 =
∑
n

cn(t) · φn(q) (12)

where q denotes the vibrational coordinate.

Show that the resulting wavefunction is of Gaussian shape for t = 0. Assume 1-D har-

monic oscillator wavefunctions and coe�cients cn(0) = 1/
√

2nn!.

Hint: The 1-D harmonic oscillator wavefunctions are given in Eq. (1.103) in the lecture

notes. The exponential generating function of Hermite polynomials is Hn:

exp(2xw − w2) =
∑
n

Hn(x)wn/n!.

(b) The generated wave packet |ψ(0)〉 is a coherent superposition of vibrational levels. Use

the time evolution operator

|ψ(t)〉 = U(t0, t)|ψ(t0)〉 (13)

to describe the motion of the center of the wave packet.

Hint: For a time-independent Hamiltonian as the 1-D harmonic oscillator U(t0, t) =

exp(−iH~ (t − t0)). Recall that φn(q) are energy eigenstates of the harmonic oscillator

Hamiltonian with eigen values given in Eq. (1.102) in the lecture notes.

(c) Ignore vibrational relaxation and consider a second fs pulse that excites the molecule

with a time delay ∆t and a phase di�erence ϕ. Find an expression for |Ψ(∆t, ϕ)〉, i.e. the
interference between the previous and the new wave packet.
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Hint: Use equation (11) together with the results from a) and b). In Eq. (11) |ψ(0)〉
represents the wave packet created by the second laser pulse and |ψ(∆t)〉 = U(0,∆t)|ψ(0)〉
the wave packet created by the �rst laser pulse.

(d) The �uorescence signal is proportional to |Ψ(∆t, ϕ)|2. Find a simple expression for this

quantity.

Hint: You can simplify the expression for Ψ(∆t, ϕ) by approximating eiω∆t in a power

series expansion and by assuming that ω∆t� 1.
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